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What is randomness?
- recommended Sugita, H. (2018) Probability and Random Number, World
Scienti�c, Chapter 2 a reasonably accessible treatment

- this issue was resolved in the 1960�s by Chaitin, Kolmogorov and
Solomono¤

- so what role does randomness have in probability and statistics?

- the concept of randomness is intimately connected with rigorizing what it
means for a function f to be "computable" by a computer

- f is computable if there is a program to evaluate it and, since all inputs
and outputs correspond to a �nite binary sequences, we can restrict
attention to the set F of all functions f : N0 ! N0

- F is uncountable (if countable, then can write ff1, f2, . . .g and de�ne f
by f (i) = 0 if fi (i) 6= 0 and f (i) = 1 if fi (i) = 0) so f 2 F but f 6= fi for
any i)

- since every program (algorithm) corresponds to a �nite binary sequence,
and the set of all �nite binary sequences is countable, this implies that the
set F of all computable functions (also called recursive functions) is
countable
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Kolmogorov Complexity (a sketch)
- put f0, 1g� = set of all �nite sequences of 0�s and 1�s obtained from
elements of N0 by binary expansion with highest order bit equal to 1, let
the empty sequence correspond to 0 2 N0, and consider N0 and f0, 1g�
as identi�ed

- so 0 � (), 1 = 1 � 20 � (1), 2 = 0 � 20 + 1 � 21 � (0, 1), 3 =
1 � 20 + 1 � 21 � (1, 1), 4 = 0 � 20 + 0 � 21 + 1 � 22 � (0, 0, 1), etc.
- note - a recursive function (see reference for precise de�nition) on N0 is
a function that can be constructed from some basic functions and an
operation called minimization and a partial function (as opposed to a total
function) f on N0 means that it may only de�ned for some elements of
N0

- let l(x) = length of x 2 f0, 1g� (or x 2 N0) and note for x 2 N0, then
l(x) � log2 x + 1 since x = 2log2 x
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De�nition If A : f0, 1g� ! f0, 1g� is a partial recursive function, when
considered as a function N0 ! N0, then it is called an algorithm. The
computational complexity under algorithm A of x 2 f0, 1g� is de�ned by

KA(x) = minfl(q) : q 2 f0, 1g�,A(q) = xg

when fq 2 f0, 1g�,A(q) = xg 6= φ and KA(x) = ∞ otherwise.

Theorem There exists algorithm A0 such that for any algorithm A there is
a constant cA0,A s.t. KA0(x) � KA(x) + cA0,A.
- such an A0 is called a universal algorithm (not unique but the Theorem
also applies to two universal algorithms and their absolute di¤erence is
bounded by a constant)

- so when KA0(x) is big, say much bigger than cA0,A and bigger than
KA(x), then (KA0(x)�KA(x))/KA0(x) is small
- for �xed A0, K (x) = KA0(x) is called the Kolmogorov complexity of x

- if a di¤erent universal algorithm is used, the absolute di¤erence in the
Kolmogorov complexities is bounded by a �xed constant
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Theorem
(i) There exists constant c > 0 s.t. K (x) � n+ c for every x 2 (f0, 1gn)�
and n 2 N0. So K : f0, 1g� ! N0 is a total function.
(ii) If n > c 0 > 0 then

#fx 2 (f0, 1gn)� : K (x) > n� c 0g > 2n(1� 2�c 0).

- x 2 (f0, 1gn)� is called random if K (x) � n
- this "complexity" measure of x is a measure of the randomness of the
sequence, e.g. (0, 1, 0, 1, 0, 1, . . . , 0, 1) is not random
- for large n, Theorem (ii) implies most elements of (f0, 1gn)� are random
Example a computer program has computed 31.4 trillion decimal digits of
π, or approximately log2(10

31.4�1012) = 1.04� 1014 bits, and the program
for this is considerably shorter so this approximation to π is not random

- so far, although most elements of f0, 1g� are random there is no known
example of such a sequence
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Theorem K is not a computable function (there is no program to
compute it guaranteed to work).
- what this means is that there is no computable test for randomness
- implications for statistics: there is no test for randomness
- so what do current tests for randomness test? independent and
identically distributed
Example Champernowne�s sequence
- consider the following sequence
(x1, ..., xn) = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 0, 1, 1, 1, 2, 1, 3, 1, 4, ..., �) and
subject this sequence to a rest that the sequence is i .i .d . from a uniform
distribution on f0, 1, 2, 3, 4, 5, 6, 7, 8, 9g
- if n is large enough the sequence will pass the test but it is not random
- recall, we stated earlier that the correct way to collect data was through
randomization and, in particular, that this made the relative frequency
distribution fX suitable for assigning beliefs concerning the values taken by
measurement X , namely, our belief that X (ω) 2 A � X is measured by

P(A) = ∑
x2A

fX (x)
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- why?

- my answer

Physical randomization corresponds to collecting the data in
such a way that interested parties have absolutely no in�uence
over the outcomes and, because of this, we can assert that the
data is objective.

- there are physical systems, like coin tossing, drawing chips from a bowl,
that we believe, when performed appropriately, cannot be controlled or
manipulated and so we accept these as random systems and use them to
randomize

- so randomness has nothing to do with probability, which measures belief,
but it plays a key role in ensuring that the data is objective
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Cox�s Theorem
- R. Cox (1946) attempted to characterize probability via a set of simple
axioms in the sense that, if we accept the axioms, then the correct way to
measure beliefs is via a probability measure P, at least up to a 1-1
transformation of P

- the attractive aspect of this approach is that it did not involve utilities or
relative frequencies rather it was more based on the logical properties we
would want such a measure to have

- such a theorem was proved by Cox but a �aw in the proof was discovered
in 1999

- this was �xed in 2009 but the modi�cation is not very appealing

- so a general open problem in this area is to �nd a development similar to
Cox�s that is also simple and appealing

- see the text for more details and references
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